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Conviction
integer variables are used to address objects in many situations
» usefulness of the invariant x # y

m alias phenomena: A[x] and A[y]

m other client analsis, optimization, independence analysis

Framework static verification, abstract interpretation theory

m allows conservative verification, computing an
over-approximation of the fixpoint

m notion of abstract domain

M. Péron and N. Halbwachs - SYNCHRON'06 - 2/25



» Theory of Program’s Dynamical Behavior Approximation

Problems complex values manipulation, iterative resolution of the
fixpoint equation

m abstraction

abstract domain

concrete domain

m conservative verification

B convergence
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Introduction s Dense Case Arithmetic Case Application to Program Analysis
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Abstract Interpretation (2/2)

» Classicals numerical abstract domains

Abstraction of a set of states:  n-relational domains

signs

intervals

zones (DBMs)

octagons

convex polyedra > ajx; < ¢;

X2
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Introduction DBMs dDBMs Dense Case Arithmetic Case Application to Program Analysis
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Disequations: Related Works

I'm a plagiarist !
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Introduction dDBMs Dense Case i ic Case Application to Program Analysis

000e00

Disequations: Related Works

I'm a plagiarist !

Consideration in abstract interpretation
m classical abstract domains are convex
m dynamic partitioning techniques

In other fields

finite unions of convex sets (MC), constraint propagation (CLP),
etc
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Goal
Extend an existing domain without increasing its complexity

Disequalities + equalities

a too poor analysis

» trivial deductions
m(x=yANy=z)=x=z
B (x=yAx#z)=>y#z

Disequalities + ordering relations

enrich the deduction power

» non completely trivial deductions may be done
(x<y<zAx#y)=x#z
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Introduction
00000e

Which domain for disequalities ?

DBM is a good candidate
a<x<ao
asSx—y<ao
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Introduction
00000e O

Which domain for disequalities 7

DBM is a good candidate

a<x<o x#0

asx-—y<a x#y
m allow strict inequalities x < y

m respect our goal: x — y # ¢ impose unbounded representation
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DBM is a good candidate
a<x<o x#0
as<x—y<o x#y
m allow strict inequalities x < y

m respect our goal: x — y # ¢ impose unbounded representation

Outline

m Difference-Bound Matrices
m disequalities Difference-Bound Matrices

m Application to Program Analysis
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Var: finite set of variables {vo} U {v1,..., vp_1}
V: variables domain, Z, Q or R
V: extension of V with +o00

Constraints (¢ € V)

constraint :=v; < c|vi—v;<c

Representation

0 X y z -1
1 2
2
+0o 400 400 -—
+o00 400 +o0 @—/_1'@ =
+o00 +00 +oo 2‘\\
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Satisfiability
> checking for the existence of negative cycles

Closure (for non-empty DBMs)
» infering implicit constraints
shortest-path closure is well defined

e.g. Floyd-Warshall algorithm (O(n?))

1< xy,z<2

NN OO
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The shortest-path closure leads to a normal form

Domain
» D(M) = {(s1, ..., Sn—1) € V"1 | Vi,j €[0..n - 1]
ijs,'g/\/lij§ A 50:0}

Order
> MM = Vi, j My <M,
property: M I M' = D(M) C D(M')

Normal form (for non-empty DBMs)

> M =infq {M' | D(M')=D(M)}

Complexity computing normal form, deciding emptiness, usual
operations: O(n®)
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Constraints (¢ € V)
constraint:=v; <clvi—v;<c|vi#0|vi—vj#0

Representation

» dDBM: a pair of matrices (M=, M?)

M= is a classical DBM M# is a symmetric boolean matrix
» disequal potential graph

0 X y z
400 -1 -1 —1\° @
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Domain
» D(M) = {(s1,...,5p-1) € V"1 |Vi,j € [0..n— 1]
sj—s,-gl\/l? A Mij-éésj—s,-;éo A so =0}

Order
> MAM = Vi jM;< M A I\/I’?:M;
property preserved: M <M’ = D(M) C D(M")

Normal form (for non-empty dDBMs)
» M =infq{M |D(M')=D(M)}

Dense Case Arithmetic Case
l emptiness / \ normalization
O(n?) NP-complete o(n®)
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Independence of disequalities

Theorem (Lassez et al. 1992)

Let | be a system of linear inequalities, and D be a finite set of
linear disequalities. Then the conjunction of | and D is feasible if
and only if, for each single disequality d € D, the conjunction of |
and {d} is feasible.

Emptiness test

» check if no variables given disequal by the dDBM are forced
equal by the DBM component

a test runing in O(n?) on the normal form
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DBM component
» independence always hold, apply DBM closure

Constraint deduction rules
m()vi—vi<c c<0 = vi#y
B vi=viAviEv = vi# v
BB vi<viSw AVviEw = Vi# v

N

» rules (1) and (2) can easily be applied in O(n?)

Closure algorithm

1 Apply the shortest-path closure on M= ;
2 Add implicit disequality constraints (rules (1) and (2)) to M7
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Propagation of rule (3)
» done on a restriction /reduction of the disequal potential graph

m restriction to zero-weighted arcs

m reduction on nodes corresponding to equal variables

Closure algorithm

1 Apply the shortest-path closure on M= ;

2 Add implicit disequality constraints (rules (1) and (2)) to M7 ;

3 Consider G the disequal potential graph of M where the set of directed
edges is restricted to those with null weight ;

4 Compute SCC, the set of strongly connected components of the directed
graph of G ;

5 Consider G* the mixed reduced graph of G constructed on SCC ;
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Propragation of rule (3)

> propagation of an irreflexive and symmetric relation along an
order relation

let G* = (V*, A® E®)

(vi,v2) € A%, (v2,v3) € A®

= E*
(V1,V2) € E.\/(VQ,Vg) c E* (V17V3) €
A kind of transitive closure
» Koubeck's algorithm is particulary interesting
worst-case complexity: O((n®)?n?)
average complexity: O((n®)?log n®)
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Propragation of rule (3)

> propagation of an irreflexive and symmetric relation along an
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1 2 3 1 2 3
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Adapting Koubeck's algorithm
» the result of reachable nodes is partitionning into 2 sets
m set of nodes reachable by some path traversing an arc doubled
by an edge
m set of other reachable nodes

veEVT [ o(v)=y(v), Pa(v) |

(@, {6})
. {5})

o/ozo\s/
\s

O, N WP oo
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Final stage
> report the new disequalities in initial dDBM

Closure algorithm

1 Apply the shortest-path closure on M= ;

2 Add implicit disequality constraints (rules (1) and (2)) to M7 ;

3 Consider G the disequal potential graph of M where the set of directed
edges is restricted to those with null weight ;

4 Compute SCC, the set of strongly connected components of the directed
graph of G ;

5 Consider G* the mixed reduced graph of G constructed on SCC ;

6 Compute O, a topological order on the directed acyclic graph of G* ;

7 Apply the disequality propagation algorithm (rule (3)) on G* with respect
to O ;

8 Add induced disequality constraints into M7

note: new disequalities are not subject to rule (2)
Complexity O(n?)

M. Péron and N. Halbwachs - SYNCHRON'06 - 20/25



NP-completeness

Theorem (Hunt 1980)

The satisfiability problem of a set of potential constraints in
presence of disequations is NP-complete

brute force technique
consider for each disequality cases x —y < —land x —y > 1
> leads to 29 problems of DBM emptiness

Inert disequalities (Seater et al 02)

disequalities wich either eliminates alone all solutions or cannot
participate in the absence of solution

> e.g. variables not bounded are inert
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Narrowing of the bounds

(x=y<0AXx#y)=(x—y<-1)
> an iterative process

) N &

S

Closure algorithm

repeat

Apply steps 1 and 2 of dense closure;
Narrow ;

until to_narrow = 0 ;

note: rule (3) taken into account by iteration of narrowing and FW
Complexity O(n®) ...(O(n%)) ?
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Arithmetic Case plication to P

ooe

Extending Difference-Bound Matrices with Disequality Constraints



Lattice defined
with classical lattice operators 4+ a widenning

Other operators

existential quantification and projection

post-condition of an assignement (x =y, w # 0) x «— x + w
abstraction of conditions

Implementation

» based on the general fixpoint computation developed by
Bertrand Jeannet

only toys examples have been succesfully analyzed
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Conclusions
» a new numerical abstract domain dealing with both potential

constraints and disequalities
m complexity is O(n®) when variables take values in a dense set

m in the arithmetic case, apart the emptiness problems which is
exponential, operations are in O(n")

Future work

m integrate the new domain in an exisiting analyzer to deal with
large examples

m implementation in the APRON interface

m extend this work to octagons (expressing x # —y)

m propose a domain expressing disequalities of the form
xX—y#c
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